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Abstract 

Scientific uncertainty affects all parts of the fisheries management process. This study reviews 

methods for quantifying scientific uncertainty for presentation as part of the scientific advice to 

fisheries managers. We surveyed stock assessment scientists to a) identify the methods commonly 

used to quantify uncertainty, b) describe how method use has changed over time, c) investigate the 

factors that influence which methods are used, and d) characterize how scientific uncertainty is 

presented to fisheries managers. We found that scientific uncertainty is being quantified and 

included in scientific advice across multiple fishery management systems. Frequentist approaches 

for quantifying uncertainty are used more broadly than Bayesian approaches, and the survey did 

not detect this changing over time. Time restrictions and methodology requests during the 

scientific review process were commonly reported as factors influencing the use of uncertainty 

methods. Uncertainty in estimates of management targets (e.g., fishing mortality or biomass), 

projections, and catch limits were the quantities most frequently included in the scientific advice 

presented to fisheries managers. Methods for quantifying uncertainty and their incorporation into 

management advice are quickly advancing, and our approaches for reviewing progress towards 

clearly and explicitly communicating the sources, treatment, and impacts of uncertainty in 

management processes must keep pace. 
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1. Introduction 1 

Communicating uncertainty is an inescapable component of providing scientific advice for 2 

fisheries management. The advent of national commitments to a precautionary approach for the 3 

conservation and management of ecological resources was championed by organizations such as 4 

the Food and Agriculture Organization (FAO) in the 1990s and inspired a thorough review of 5 

methods for quantifying uncertainties in stock size, stock productivity, reference points, and 6 

fishing mortality by Patterson et al. (2001). The efficacy of fisheries management is influenced by 7 

at least five types of uncertainty: 1) observation uncertainty, the uncertainty in measurement of 8 

observable quantities such as biomass from surveys, catch or sizes-at-age; 2) process uncertainty, 9 

the uncertainty due to underlying stochasticity in stock dynamics such as recruitment or variation 10 

in the growth of a fish stock; 3) model uncertainty, the misspecification of model parameters or 11 

structure (e.g., assuming the incorrect form for selectivity as a function of size); 4) estimation 12 

uncertainty, the inaccuracy and imprecision associated with estimated model parameters; 5) and 13 

implementation uncertainty, the variability in the implementation of management strategies 14 

(Holland and Herrera, 2009; Rosenberg and Restrepo, 1994). These uncertainties occur in all 15 

fishery systems, and affect the interpretation of data, analysis results, ranking of management 16 

options, and the efficacy of those options (Peterman, 2004). The resulting impact of uncertainty 17 

on scientific advice is critical because both overemphasis and understatement of uncertainty can 18 

undermine scientific credibility and ultimately progress towards management goals (Dankel et al., 19 

2012). Failure to effectively account for uncertainty can lead to overshooting management targets, 20 

failing to rebuild depleted stocks, and missing opportunities to take advantage of sustainable 21 

fishing opportunities (Cadrin et al., 2015). Rosenberg (2007) suggested those who produce 22 

scientific advice for fisheries management navigate the pitfalls of blanket generalizations about 23 

uncertainty by discerning “the almost certain from the less certain”.  24 

It is convenient to consider two classes of uncertainty when discussing the quantification of 25 

uncertainty: scientific uncertainty (i.e., observation, process, model, and estimation uncertainties) 26 

and management uncertainty (i.e., implementation uncertainty). The focus of this paper is on 27 

methods for and applied examples of quantifying scientific uncertainty, as these dominate the 28 

literature and are general across jurisdictions and taxa. Identifying the widely used tools and 29 

methods for quantifying scientific uncertainty and the frequency of use over time, fish stocks, and 30 

regions can contribute to the continued development of best practices. Understanding the factors 31 

influencing the use of a tool or method can inform the allocation and development of resources to 32 

better quantify uncertainty.  33 

During this exploration of methods and tools for quantifying uncertainty, we will use the 34 

following definitions of key concepts. The fisheries management process consists of data 35 

collection, analysis, scientific review, provision of scientific advice, decision-making, setting of 36 

catch limits, and enforcement (FAO, 1997). Jurisdictions are the organizations (e.g., single 37 

governmental, multi-national governmental, and non-governmental) designing and implementing 38 

the fisheries management process. A stock assessment is a process that includes the activities, 39 

analyses, and reports related to the data collection, analysis, and scientific review components of 40 

the fishery management process (PFMC, 2018). More specifically, the analysis process of a stock 41 

assessment applies statistical and mathematical models to use different data sources (e.g., survey, 42 

fishery, biological) to make quantitative predictions about the abundance and trends of fish stocks 43 

and of fishing intensity (Hilborn and Walters, 1992). Scientific uncertainty can be quantified using 44 

frequentist and Bayesian paradigms of statistical inference (hereby deemed as uncertainty 45 

methods). Sensitivity analyses elucidate how these uncertainties propagate through an assessment 46 



model and can be apportioned to sources of uncertainty in the model inputs and parameter values 47 

(Satelli, 2002; Steel et al., 2009). The modeling frameworks designed for stock assessment 48 

analysis, the uncertainty methods, and sensitivity analyses can be assembled into packages (i.e., 49 

well-documented software repositories) to be downloaded and installed on a computer for 50 

reproducible analyses. 51 

Dichmont et al. (2016a) assert that assembling stock assessment modeling frameworks into 52 

packages is integral for increasing access to tools for quantifying uncertainty. The advantages of 53 

assessment packages include that open access to such packages facilitates exploration of multiple 54 

assessment configurations and strengthens the peer-review process. However, implementing a new 55 

model for a stock using packages developed for different, specific stocks presents challenges such 56 

as dealing with the “black box” effect when debugging potential errors and the steep learning curve 57 

for packages with many options. This meta-analytic approach to characterizing package use in 58 

U.S. fisheries management lends itself well to exploration of other analysis components such as 59 

methods for quantifying scientific uncertainty. 60 

We apply a similar meta-analytic approach to Dichmont et al. (2016a) to summarize the 61 

methods that produce model outputs used to communicate scientific uncertainty to fisheries 62 

managers. Specifically, we are interested in the methods used for quantifying uncertainty within a 63 

given assessment framework and across such frameworks. We surveyed stock assessment 64 

scientists to investigate the following: 1) what methods for quantifying uncertainty are used?; 2) 65 

how have methods changed over time?; 3) what are the most common factors that influence the 66 

use of a specific method?; and 4) how are scientific uncertainties presented to fisheries managers?  67 

2. Methods 68 
The survey addressed each research question through the use of multiple choice and free response 69 

questions (see Supplementary Figs 1- 7 for survey questions). Participants in the survey were asked 70 

to state the assessment tools (e.g., packages) they have used, the approaches used for quantifying 71 

scientific uncertainty while conducting assessments, and the quantities of interest used in 72 

sensitivity analyses (Supplementary Figs 2-4). To characterize how method and tool use has 73 

changed over time, participants were asked to provide the tools, analyses, and approaches used in 74 

a (subjective) representative sample of the assessments they have conducted (Supplementary Figs 75 

6-7). To identify factors that may influence method and tool use, analysts were asked which 76 

available methods for quantifying uncertainty were not used, which quantities of interest could 77 

have been considered for uncertainty evaluation but were not, and why (Supplementary Figs 3-4). 78 

Finally, participants were asked how they have presented uncertainties to fishery managers 79 

(Supplementary Fig. 5). 80 

The survey was distributed to scientists who have conducted stock assessments and provided 81 

scientific advice to management. Survey participants (N=68) have provided scientific advice for 82 

many organizations around the world. Respondents self-defined the numbers of years worked as a 83 

stock assessment scientist, and these ranged from 1 to 38 years (Fig. 1).  84 

We asked survey respondents to provide information for some representative stock 85 

assessments they have conducted over the last 5-10 years. This included the common and scientific 86 

names of the stock, the agency for which the assessment was conducted, the year the assessment 87 

was conducted, the packages used, the data types used, the sensitivity analyses conducted, and the 88 

uncertainty methods used. Survey respondents were invited to list the uncertainty methods, 89 

sensitivity analyses, and packages featured in the survey and any additional analyses and analysis 90 

methods. The resulting time series covered 1997 to 1999 (ranging from 1 to 3 assessments each 91 

year) and 2002 to 2018 (ranging from 1 to 64 assessments each year). Originally, there were 372 92 



assessments reported. However, there were cases of repeat assessments because multiple 93 

assessment authors who have worked on the same assessments were surveyed. The information 94 

was collated across respondents and resulted in 353 individual assessments.  95 

3. Results 96 

3.1 Representativeness of the survey results 97 

Our survey reviewing methods for quantifying scientific uncertainty has notable limitations. The 98 

representation of agencies and regions is not evenly distributed, as 35 of the 68 respondents were 99 

based at the U.S. National Marine Fisheries Service. However, the assessment scientists and the 100 

stocks they reported working with fall within 17 of the 18 regions used by the RAM Legacy Stock 101 

Assessment Database [Ricard et al., 2012] to aggregate assessment summaries (Fig. 1). The 102 

patterns in method use presented have low sample sizes (e.g., 1-2 stocks) for assessments in the 103 

early part of the time series. 104 

3.2 Software and model framework  105 

Identifying the packages and thus the modeling frameworks used to conduct assessments allows 106 

us to draw connections between the tools available and the methods for quantifying uncertainty—107 

i.e., how scientists are discerning “the almost certain from the less certain”. Survey respondents 108 

were asked to identify software they use (and have used) in the process of conducting a stock 109 

assessment. The provided list of available software featured 23 options (Table 1; Supplementary 110 

Fig. 2) and the survey responses identified an additional 23 (Table 2). The packages used in the 111 

provided assessments (N=353) were sorted into the following modeling frameworks: surplus 112 

production models (N=2), virtual population analyses (VPA; N=17), age-structured models 113 

(N=244), length-structured models (N=19), depletion models (N=9), depletion-based stock 114 

reduction analyses (DB-SRA; N=3), and not specified (N=59). Not specified consisted of 115 

responses with package descriptions that did not indicate the model framework used for an 116 

assessment (e.g., “User-written ADMB code”). The use of the VPA model framework decreased 117 

over time, the use of length-structured models increased in most recent years, and age-structured 118 

models were used consistently throughout the time period surveyed (Fig. 2, panel a). Not enough 119 

information was provided to describe trends in surplus production, depletion, or DB-SRA models 120 

over time (Fig. 2, panel a). Assessments developed using age-structured models used the most 121 

methods for quantifying uncertainty (Fig. 3). Frequentist uncertainty methods were used across all 122 

frameworks except DB-SRA, with asymptotic methods being the most used frequentist approach 123 

(Fig. 3). 124 

3.3 Structural models and estimation methods 125 

The patterns in use of sensitivity analyses and statistical inference paradigms (and the drivers of 126 

such patterns) can influence the type and complexity of information to present with scientific 127 

advice to management.  128 

Sensitivity analysis help understand some aspects of model uncertainty. When asked if they 129 

utilize sensitivity analyses to directly quantify uncertainty, 38 respondents provided a response: 130 

20 respondents reported yes, 16 reported no, and 2 reported sometimes. The participants stated 131 

that they used sensitivity analyses to qualitatively characterize uncertainty, i.e., as a “2nd tier of 132 

uncertainty” to be used in conjunction with other methods (e.g., management strategy evaluation 133 

and Bayesian methods). Sensitivity tests can be used to capture some aspects of model uncertainty 134 

when providing management advice; for example, when defining states of nature and bracketing 135 

ranges of plausible outcomes when important elements of uncertainty cannot be incorporated 136 



directly into a model (e.g., if one cannot estimate natural mortality, steepness, or catch uncertainty). 137 

These responses also highlighted the strength of sensitivity testing as a qualitative tool useful for 138 

representing extremes to demonstrate model behavior and assess the robustness of model results 139 

to baseline assumptions and assumed values for model parameters.  140 

Participants were asked if they used frequentist (i.e., asymptotic methods, bootstrapping, 141 

jackknife, and likelihood profiles) and Bayesian (i.e., Adaptive Importance Sampling (AIS), 142 

Markov Chain Monte Carlo (MCMC), Sample-Importance-Resample (SIR)) methods to quantify 143 

process and estimation uncertainty. For the frequentist methods, asymptotic methods and 144 

likelihood profiles were selected most frequently, followed by bootstrapping, and jackknife (Fig. 145 

4, panel a). The dominant Bayesian approach was MCMC and its many variants (N=48) (Fig. 4, 146 

panel b). The survey did not detect a substantial change in estimation method use over time (Fig. 147 

5). Additional methods for quantifying uncertainty provided by survey respondents were decision 148 

tables, ensemble modeling, retrospective analyses, and the Approximate Bayesian Computation.  149 

Respondents referred to assessing the “performance” of models using retrospective analyses 150 

of base models and previous assessments of the same stock, and models of various levels of 151 

complexity (e.g., fitting a production model as well as a model that includes all of the data). 152 

3.4 Model specification and sensitivity analyses  153 

Evaluating the sensitivity of the outcomes of an assessment to the specifications of the model on 154 

which it is based is integral for the prevention of overemphasis or understatement of uncertainty 155 

and maintaining progress toward management goals and scientific credibility. We asked 156 

respondents if they routinely conduct sensitivity analyses based on alternative catch streams, and 157 

on assumptions about catchability, growth, maturity, natural mortality, recruitment (e.g., fixed 158 

values for stock-recruitment steepness), selectivity parameterization, the stock-recruit relationship 159 

(e.g., a Beverton-Holt or Ricker parameterization) and data set choice, and data weighting. The 160 

quantities of interest investigated for sensitivity analyses did not change over time (Fig. 6). Of the 161 

provided list, data weighting was the most selected option and maturity was the least (Fig. 7). 162 

Additional sensitivities fell into two categories: data processing and changes to structural 163 

assumptions. Sensitivities involving data processing (related in part to observation uncertainty) 164 

included the range of years of data used for specific data sets and how they are used (e.g., a survey 165 

using different sampling methods in different years), the binning of length compositions, 166 

alternative survey indices (e.g., design- vs. model-based), use of tagging data, how survey data are 167 

aggregated over space, area-stratified vs. spatially lumped, and alternative assumptions regarding 168 

ageing imprecision and time-varying selectivity. Model structure sensitivity analyses (i.e., model 169 

uncertainty) involved comparing results using different stock assessment packages (e.g., 170 

personalized ADMB model, Stock Synthesis, and SAM) [see Table 2 for example references], the 171 

number of growth morphs (in a Stock Synthesis assessments), whether the model is single- or two-172 

sex, the number of areas, fleet structure, temporal step, alternative time ranges for the assessment 173 

movement/migration assumptions, likelihood distribution assumptions, proportional vs. non-174 

proportional relationships between catch-rate and abundance, amount of fishing prior to the start 175 

of the data series, cetacean depredation, and illegal, unreported, and unregulated fishing trends.  176 

3.5 Presentation of uncertainty to fishery managers 177 

Determining the most common assessment outputs used for producing scientific advice for 178 

management may reveal how the methods for quantifying uncertainty and the information 179 

requested by fisheries managers overlap. Survey participants were given eight options for 180 

assessment outputs used to communicate scientific uncertainty to fishery managers: estimates of 181 



fishing mortality and/or biomass; estimates of fishing mortality and/or biomass relative to 182 

reference points; the results of simulation testing; the results of management strategy evaluations; 183 

decision tables; values for catch limits (e.g., Total Allowable Catch (TAC), Acceptable Biological 184 

Catch (ABC), Overfishing Limit (OFL)); projections under uncertainty; and other (Fig. 8). The 185 

precision of estimates of incoming year class strengths (i.e., recruitment) and the results of 186 

ensemble models were suggested as additional ways to communicate uncertainty by the 187 

respondents. Several respondents reported that while they have presented many of these model 188 

outputs to fisheries managers and their scientific review bodies, there are cases when the 189 

information (and its associated estimates of uncertainty) have not been used in fisheries 190 

management.  191 

4. Discussion 192 

Scientific uncertainty is being quantified and included in scientific advice across multiple fisheries 193 

management systems. Frequentist approaches for quantifying process and estimation uncertainty 194 

are used more broadly than Bayesian approaches, and the survey did not detect this trend changing 195 

over time. This is also reflected in the prolific use of packages using asymptotic methods for 196 

estimating uncertainty, which has qualitatively increased over time (in particular, those based on 197 

ADMB). Similarly, there has been little change in the quantities of interest investigated for 198 

sensitivity analyses over time, supporting Maunder and Piner's (2015) statement that successful 199 

interpretation of data requires knowledge of growth, recruitment, natural mortality, selectivity, and 200 

sampling processes for the stock—knowledge that remains incomplete for most stocks and regions. 201 

Time restrictions and methodology requests during the scientific review process were commonly 202 

reported as factors influencing the use of uncertainty methods (more below). Uncertainty in 203 

estimates of management targets (e.g., fishing mortality or biomass), projections, and catch limits 204 

were the quantities most frequently presented to managers. Survey respondents also expressed that 205 

not all uncertainties that are quantified are presented and not all those presented are used by 206 

managers in the decision-making process. 207 

 Ultimately, asking assessment scientists what factors influence their use of specific approaches 208 

to quantifying scientific uncertainty revealed a common theme: the design of the fisheries 209 

management system. The priorities of jurisdictions designing each component of this cycle vary 210 

with their respective values, economic structures, and political traditions (Marchal et al., 2016). At 211 

the heart of the fisheries management system lies the mission to have a transparent process 212 

operating with the utmost integrity to strengthen stakeholder confidence in the decisions being 213 

informed by scientific advice. Failure to explicitly define the roles and responsibilities of managers 214 

and scientists presents opportunities for certain sources of uncertainty to not be properly identified 215 

(Cadrin et al., 2015). The definition and communication of these roles and responsibilities is a 216 

dynamic process that changes as the fishery management system encounters new situations and 217 

experiences changes in decision-making participants and government structures (Francis and 218 

Shotton, 1997). 219 

Many jurisdictions create and implement review protocols to meet their goals and avoid the 220 

above pitfalls, which directly influence the methods used to quantify uncertainty. This can manifest 221 

as specific methodology requests for conducting assessments, quantifying uncertainty, and 222 

presentation of scientific advice. The ICES uses a Generic Terms of Reference for many of its 223 

stock assessment working groups. Each stock assessment working group applies an assessment 224 

model framework that is either analytical, forecast, or based on trend indicators, and the final report 225 

is requested to address the following: input data and data quality; catch misreporting; percent of 226 

total catch taken in a regulatory area; if applicable, estimates of maximum sustainable yield proxy 227 



reference points; the status of the stock relative to reference points; projected catch scenarios; and 228 

historical and analytical performance of the assessment and catch options (ICES, 2018). In the 229 

U.S., the Pacific Fishery Management Council has specific requests for the evaluation of 230 

uncertainty in assessment results for U.S. West Coast groundfish and coastal pelagic species 231 

stocks: model specification uncertainty; parameter uncertainty (including likelihood profiles); 232 

retrospective analysis; historical analysis; probability statements for ranges of model runs; and for 233 

groundfish at least three states of nature for model ranges (i.e., most probable, lower biomass 234 

trajectory, and high biomass trajectory) (PFMC, 2018).  235 

The time allocated to conduct and review a stock assessment varies by jurisdiction and directly 236 

influences the methods used to quantify uncertainty. The amount of time available to conduct and 237 

review a stock assessment to prepare scientific advice depends on resource availability (e.g., 238 

external reviewers) and the timetable for making short-term management decisions (e.g., setting 239 

catch limits). In some regions of the U.S., assessments are conducted over the course of a few 240 

months and are reviewed over a short time period (e.g., 5 days for U.S. West Coast) and any 241 

additional model requests must be performed within this time frame (PFMC, 2018). In other 242 

management systems such as New Zealand, fish-stock assessment groups meet daily over the 243 

course of weeks or months to conduct the assessment and respond to scientific review feedback 244 

(Marchal et al., 2009). ICES stock assessment working groups meet for 5-10 days to complete and 245 

review assessments (Marchal et al., 2009). The combination of requested methodology and the 246 

time available for conducting and reviewing assessments may not leave stock assessment scientists 247 

with enough time to run full Bayesian analyses for quantifying process and estimation uncertainty. 248 

However, advances in optimization approaches in software such as ADMB (e.g., Hamiltonian No 249 

U-Turn Samplers) may reduce this bottleneck in analysis run time enough to influence the use of 250 

uncertainty methods for management advice in the future (Monnahan et al., 2019). 251 

The frequency of assessment for a stock (i.e., stock prioritization) also influences time 252 

restrictions and may indirectly impact the use of specific uncertainty methods. Stock prioritization 253 

generally relates to the total number of stocks and species assessed by a jurisdiction, relative 254 

commercial importance of the stock, and data availability (Marchal et al., 2009; Methot, 2015). 255 

Depending on the stock, assessment frequency may range from once a year to once every 10 or 256 

more years. Jurisdictions with many stocks may have longer gaps between assessments for a single 257 

stock because limited resources (e.g., number of available assessment scientists) may restrict the 258 

number of assessments that can be conducted annually. The stocks and species assessed may also 259 

rotate over time. Stock prioritization procedures (informally and formally defined) decide how this 260 

stock rotation occurs and fisheries scientists and managers should collaborate to design procedures 261 

that “focus limited resources where they are most needed to reduce uncertainty” (Cadrin et al., 262 

2015). Given these constraints, incorporating major changes to model structure and uncertainty 263 

methodology may not be feasible every assessment cycle, especially if there are long gaps since 264 

the last assessment for a stock, new data considerations, and requested methodology from scientific 265 

review committees. 266 

Summarizing the influence of management design highlights opportunities to expand the 267 

repertoire for quantifying uncertainty for use in the development of scientific advice. Survey 268 

respondents reported that the uncertainty methods and sensitivity analyses they employ often differ 269 

between assessment reports for tactical management and research publications. Scientists should 270 

continue to explore and test alternative hypotheses in a research context and integrate the reliable 271 

approaches into the packages (new and existing) and requested methods used to inform 272 

management. Using packages that have been previously reviewed and approved by the scientific 273 



review committees has the potential to alleviate some of the burden of the review process and may 274 

promote more effective communication of results (Dichmont et al., 2016a). The expansion of 275 

current packages (e.g., Stock Synthesis and CASAL) can include the addition of spatially-276 

structured population dynamics models, incorporation of non-traditional data types (e.g., tagging 277 

data, and habitat information), and integration of economic models (e.g., Australian fisheries 278 

requiring management advice related to maximum economic yield) (Dichmont et al., 2016b). 279 

Continued and expanded focus on cooperative research opportunities such as courses (e.g., 280 

Advanced School on Multispecies Modelling Approaches for Ecosystem Based Marine Resource 281 

Management in the Mediterranean Sea (AMARE-ED), www.echo.inogs.it/amare-med/; ICES 282 

training courses, www.ices.dk/news-and-events/Training/) and workshops (e.g., National Stock 283 

Assessment Workshops, www.st.nmfs.noaa.gov/stock-assessment/workshops; Center for the 284 

Advancement of Population Assessment Methodology (CAPAM), www.capamresearch.org) are 285 

integral for “leveling the playing field” by fostering environments for the development and 286 

dissemination of new methods for quantifying scientific uncertainty for use in scientific advice 287 

across jurisdictional boundaries (Cadrin et al., 2015; Dichmont et al., 2016b).  288 

Using meta-analytic approaches to characterize how uncertainty permeates through fisheries 289 

management systems around the world can also be further developed. The set of methods for 290 

quantifying management uncertainty for use in advice for fisheries management has increased in 291 

the last decade (e.g., Dichmont et al., 2006; Fulton et al., 2011; Sethi et al., 2005) and exploring 292 

how factors such as fisheries management system design influences the development and 293 

implementation of these methods is a promising area of future research. Investigating how 294 

uncertainties are presented in scientific advice across jurisdictions (e.g., the Kobe framework [Kell 295 

et al., 2016]) may provide insight about how to progress effective communication of uncertainty 296 

in a field producing increasingly complex and multidimensional management advice to a broad 297 

audience of stakeholders. Survey approaches sensu Levontin et al. (2017) complement this effort 298 

by evaluating the reliability of our visualization of modeling approaches. The authors suggest that 299 

repositories of stock assessment results begin routinely storing uncertainty measures in addition to 300 

point estimates. Methods for quantifying uncertainty and their incorporation into management 301 

advice is quickly advancing and our approaches for reviewing our progress towards clearly and 302 

explicitly communicating the sources, treatment, and impacts of uncertainty in our management 303 

processes must keep pace. 304 

Acknowledgements 305 

This research has been supported by the University of Washington School of Aquatic and Fishery 306 

Sciences and the National Science Foundation. The authors warmly thank the 68 stock assessment 307 

scientists for their responses to our survey. We also thank J. Cope (NOAA, NWFSC), M. Haltuch 308 

(NOAA, NWFSC), and J. Valero for their feedback during the development of the survey. J. Cope 309 

(NOAA, NWFSC) and T. Essington (University of Washington) are thanked for their mentorship 310 

and early manuscript review. Two anonymous reviewers and the editor Steven Cadrin (U Mass, 311 

Dartmouth) are thanked for their comments on an earlier version of this paper. KPJ was funded by 312 

the National Science Foundation Graduate Research Fellowship Program. AEP was partially 313 

funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA 314 

Cooperative Agreement NA15OAR4320063, Contribution No. _____ 315 



References 
Brodziak, J., Rago, P., Conser, R., 1998. A general approach for making short-term stochastic projections from an 

age-structured fisheries assessment model. In Proceedings of the International Symposium on Fishery Stock 

Assessment Models for the 21st Century. Edited by F. Funk, T. Quinn II, J. Heifetz, J. Ianelli, J. Powers, J. 

Schweigert, P. Sullivan, and C.-I. Zhang. Alaska Sea Grant College Program, University of Alaska, Fairbanks. 

pp. 933–954. 

Bull, B., Francis, R.I.C.C., Dunn, A., McKenzie, A., Gilbert, D.J., Smith, M.H., Bain, R., Fu, D., 2012. CASAL (C++ 

algorithmic stock assessment laboratory): CASAL user manual v2.30-2012/03/21. NIWA Technical Report 135. 

280 p. 

Cadrin, S., Henderschedt, J., Mace, P., Mursalski, S., Powers, J., Punt, A.E., Restrepo, V., 2015. Addressing 

Uncertainty in Fisheries Science and Management. National Aquarium. http://www.fao.org/3/a-bf336e.pdf 

Collie, J.S., Sissenwine, M.P., 1983. Estimating population size from relative abundance data measured with error. 

Can. J. Fish. Aquat. Sci., 40, 1871–1879. 

Dankel, D.J., Aps, R., Padda, G., Röckmann, C., van der Sluijs, J.P., Wilson, D.C., Degnbol, P., 2012. Advice under 

uncertainty in the marine system. ICES J. Mar. Sci. 69, 3–7. 

Darby, C.D., Flatman, S., 1994. Virtual population analysis: Version 3.1 (Windows/DOS) User Guide. MAFF 

Directorate of Fisheries Research IT Report 1. 85 pp. 

Davies, N.M., Gilbert, D.J., McKenzie, J.R., 2001. Length-based growth estimates for application in an integrated age 

and length structured population model. Final research report for Ministry of Fisheries Research Project 

SNA1999/01 Objective 1. National Institute of Water and Atmospheric Research. 

https://fs.fish.govt.nz/Page.aspx?pk=113&dk=22515 

de la Mare, W.K., and Cooke, J.G. (1993). BALEEN II: The population model used in the Hitter-Fitter programs. 

Manuscript available from the IWC Secretariat. 

De Oliveira, J., Darby, C.D., Roel, B.A., 2010. A linked separable-ADAPT VPA assessment model for western horse 

mackerel (Trachurus trachurus), accounting for realized fecundity as a function of fish weight. ICES J. Mar. Sci. 

67, 916–930. 

Dichmont, C.M., Deng, R.A., Punt, A.E., Venables, W., Haddon, M., 2006. Management strategies for short-lived 

species: the case of Australia’s northern prawn fishery: 1. Account for multiple species, spatial structure and 

implementation uncertainty when evaluating risk. Fish. Res. 82, 204–220. 

Dichmont, C.M., Deng, R.A., Punt, A.E., Brodziak, J., Chang, Y., Cope, J.M., Ianelli, J.N., Legault, C.M., Methot, 

R.M., Porch, C.E., Prager, W.H., Shertzer, K.W., 2016a. A review of stock assessment packages in the United 

States. Fish. Res. 183, 447–460. 

Dichmont, C.M., Deng, R.A., Punt, A.E., 2016b. How many of Australia’s stock assessments can be conducted using 

stock assessment packages? Mar. Policy. 74, 279–287. 

Dick, E. J., and MacCall, A.D., 2011.  Depletion-Based Stock Reduction Analysis: A catch-based method for 

determining sustainable yields for data-poor fish stocks.  Fish. Res. 110, 331–341.  

FAO., 2007. Fisheries management. Technical Guidelines for Responsible Fisheries. 4: 1-82. FAO, Rome. 

http://www.fao.org/3/a-w4230e.html 

FAO., 2013. Fisheries and aquaculture software. FISAT II - FAO-ICLARM Stock Assessment Tool. In: FAO 

Fisheries and Aquaculture Department. Rome. Updated 28 November 2013. 

http://www.fao.org/fishery/topic/16072/en 

Fournier, D.A., Hampton, J., Sibert, J.R., 1998. MULTIFAN-CL: a length-based, age-structured model for fisheries 

stock assessment, with application to South Pacific albacore, Thunnus alalunga. Can. J. Fish. Aquat. Sci., 55, 

2105–2116. 

Fournier, D.A., Skaug, H.J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M.N., Nielsen, A., Sibert, J., 2012. AD 

Model Builder: using automatic differentiation for statistical inference of highly parameterized complex 

nonlinear models. Optim. Methods Softw. 27, 233–249. 

Fox, W., 1975. Fitting the generalized stock production by least-squares and equilibrium approximation. Fish. Bull., 

73, 23–37. 

Francis, R.I.C.C., Shotton, R., 1997. “Risk” in fisheries management: a review. Can. J. Fish. Aquat. Sci. 54, 1699–

1715. 

Fulton, E.A., Smith, A.D.M., Smith, D.C., van Putten, I.E., 2011. Human behavior: the key source of uncertainty in 

fisheries management. Fish. Fish. 12, 2–17. 

Gadget. 2020. Gadget development repository. http://hafro.github.io/gadget/. (Accessed 11 January 2020). 

Gayanilo, F., Sparre, P., Pauly, D., 1994. The FAO-ICLARM stock assessment tools (FISAT) User's guide. FAO 

computerised information series: Fisheries. 1048. 



Goodyear, C., 2004a. FSIM-a simulator for forecasting fish population trends and testing assessment methods. 

Collective Volume Scientific Papers ICCAT. 56, 120–131. 

Goodyear, C., 2004b. A data simulator for testing alternative longline CPUE standardization methods. Col. Vol. Sci. 

Pap. ICCAT. 56, 132–145. 

Haddon, M., 2011. Modelling and quantitative methods in fisheries. CRC Press. Boca Raton, FL. 

Hilborn, R., Walters, C., 1992. Quantitative fisheries stock assessment: Choice, dynamics and uncertainty. Chapman 

and Hall.  

Hilborn, R., Mangel, M., 1997. The ecological detective. Princeton University Press. 

Hilborn, R., Maunder, M., Parma, A., Ernst, B., Payne, J., Starr, P., 2003. Coleraine: A generalized age-structured 

stock assessment model. User’s manual version 2.0. University of Washington Report SAFS-UW-0116. 

http://fish.washington.edu/research/coleraine/coleraine.pdf. 

Hoggarth, D. D., Abeyasekera S., Arthur R.I., 2006. FAO Fish. Tech. Pap. Stock assessment for fishery management. 

FAO, Rome, 487p. 

Holland, D.S., Herrera, G.E., 2009. Uncertainty in the management of fisheries: contradictory implications and a new 

approach. Mar. Resour. Econ. 24, 289–299. 

ICES., 2018. 2019 ACOM and ACOM Expert Group Terms of Reference. ICES AC. November 6, 2018. 

Jardim, E., Millar, C. P., Mosqueira, I., Scott, F., Osio, G. C., Ferretti, M., Alzorriz, N., Orio, A., 2014. What if 

stock assessment is as simple as a linear model? The a4a initiative. ICES Journal of Marine Science, 72: 232-

236. 

Kell, L.T., Levontin, P., Davies, C.R., Harley, S., Kolody, D.S., Maunder, M.N., Mosqueira, I., Pilling, G.M., Sharma, 

R., 2016. The quantification and presentation of risk. Management Science in Fisheries: An Introduction to 

Simulation-Based Methods. Oxford, UK: Earthscan (Routledge), 348. 

Levontin, P., Baranowski, P., Leach, A.W., Bailey, A., Mumford, J.D., Quetglas, A., Kell, L.T., 2017. On the role of 

visualization in fisheries management. Mar. Policy. 78, 114–121. 

MacCall, A.D., 2009. Depletion-corrected average catch: a simple formula for estimating sustainable yields in data-

poor situations. ICES J. Mar. Sci., 66, 2267–2271. 

Magnusson, A., Punt, A.E., Hilborn, R., 2013. Measuring uncertainty in fisheries stock assessment: the delta method, 

bootstrap, and MCMC. Fish. Fish. 14, 325–342.  

Majkowski, J., 1982. Usefulness and applicability of sensitivity analysis in a multispecies approach to fisheries 

management. 149–165. In Pauly, D. and G.I. Murply (eds) Theory and management of tropical fisheries. 

ICLARM Conference Proceedings 9, 360 p. International Center for Living Aquatic Resource Management, 

Manila, Philippines and Division of Fisheries Research, Commonwealth Scientific and Industrial Research 

Organization, Cronulla, Australia. 

Marchal, P., Lallemand, P., Stokes, K., Thébaud, O., 2009. A comparative review of the fisheries resource 

management systems in New Zealand and in the European Union. Aquat. Living Resour. 22, 463–481. 

Marchal, P., Andersen, J.L., Aranda, M., Fitzpatrick, M., Goti, L., Guyader, O., Haraldsson, G., Hatcher, A., Hegland, 

T.J., Le Floc’h, P., Macher, C., Malvarosa, L., Maravelias, C.D., Mardle, S., Murillas, A., Nielsen, J.R., Sabatella, 

R., Smith, A.D.M., Stokes, K., Thoegersen, T., Ulrich, C., 2016. A comparative review of the fisheries 

management experiences in the European Union and in other countries worldwide: Iceland, Australia, and New 

Zealand. Fish. Fish. 17, 803–824. 

Martell, S.J., Schweigert, J.F., Haist, V., Cleary, J.S., 2012. Moving towards the sustainable fisheries framework for 

Pacific herring: data, models, and alternative assumptions; Stock Assessment and Management Advice for the 

British Columbia Pacific Herring Stocks: 2011 Assessment and 2012 Forecasts. DFO Can. Sci. Advis. Sec. Res. 

Doc. 2011/136. xii + 151 p. 

Maunder, M.N., Piner, K.R., 2015. Contemporary fisheries stock assessment: many issues still remain. ICES J. Mar. 

Sci. 72, 7–18. 

McAllister, M., Babcock, E., 2006. Bayesian surplus production model with the sampling importance resampling 

algorithm (BSP): a user's guide. 

Methot, R.D., Wetzel, C.R., 2013. Stock synthesis: a biological and statistical framework for fish stock assessment 

and fishery management. Fish. Res. 142, 86–99. 

Methot, R.D., 2015. Prioritizing fish stock assessments. U.S. Dep. Commer., NOAA Tech. Memo. NFMS-F/SPO-

152, 31 p. 

Monnahan, C.C., Branch, T.A., Thorson, J.T., Stewart, I.J., Szuwalski, C.S., 2019. Overcoming long Bayesian run 

times in integrated fisheries stock assessments. ICES J. Mar. Sci. 00, 00–00. 

Muppet. 2020. Muppet development repository. http://github.com/hafro/muppet. (Accessed 11 January 2020). 



Nielsen, A., Berg, C.W., 2014. Estimation of time-varying selectivity in stock assessments using state-space models. 

Fish. Res. 158, 96–101. 

NOAA Toolbox, 2016. NOAA Fisheries Toolbox. https://www.nefsc.noaa.gov/nft/ (accessed 14 August 2019). 

Pacific Fishery Management Council, 2018. Terms of Reference for the groundfish and coastal pelagic species stock 

assessment review process for 2019-2020. Pacific Fishery Management Council, 7700 Ambassador Place NE, 

Suite 200, Portland, Oregon. 

Patterson, K., Cook, R., Darby, C., Gavaris, S., Kell, L., Lewy, P., Mesnil, B., Punt, A., Restrepo, V., Skagen, D.W., 

Stefansson, G., 2001. Estimating uncertainty in fish stock assessment and forecasting. Fish. Fish. 2, 125-157. 

Payá, I., 2019. Stock Assessment Programs. https://sites.google.com/site/fishassessement/stock-assessment-programs 

(accessed 14 August 2019). 

Pedersen, M.W., Casper, W.B., 2017. A stochastic surplus production model in continuous time. Fish. Fish. 18, 226–

243. 

Peterman, R.M., 2004. Possible solutions to some challenges facing fisheries scientists and managers. ICES J. Mar. 

Sci. 61, 1331–1343. 

Pope J.G., 1972. An investigation of the accuracy of virtual population analysis using cohort analysis. ICNAF Res. 

Bull. 9, 65 –74. 

Porch, C., 2017. NOAA Tech. Memo. NMFS-SEFSC-708 PRO-2BOX 3.0 User Guide. 

10.13140/RG.2.2.12258.17604. 

Prager, M.H., 1994. A suite of extensions to a nonequilibrium surplus–production model. Fish. Bull. 92, 374–389. 

Punt, A.E., Hilborn, R., 1997. Fisheries stock assessment and decision analysis: the Bayesian approach. Rev. Fish. 

Biol. Fish. 7, 35–63.  

Punt, A.E., Walker, T.I., 1998. Stock assessment and risk analysis for the school shark (Galeorhinus galeus) off 

southern Australia. Mar. Freshwater Res. 49, 719–731. 

Punt, A.E., 2015. Strategic management decision-making in a complex world: quantifying, understanding, and using 

trade-offs. ICES J. Mar. Sci., 74, 499–510. 

Ricard, D., Minto, C., Jensen, O.P. and Baum, J.K. 2012. Evaluating the knowledge base and status of commercially 

exploited marine species with the RAM Legacy Stock Assessment Database. Fish. Fish. 13, 380-398. 

Roel, B.A., De Oliveira, J.A.A., Beggs, S., 2009. A two-stage biomass model for Irish Sea herring allowing for 

addition-al variance in the recruitment index caused by mixing of stocks. ICES J. Mar. Sci, 66, 1808–1813. 

Rosenberg, A.A., Restrepo, V.R., 1994. Uncertainty and risk evaluation in stock assessment advice for U.S. marine 

fisheries. Can. J. Fish. Aquat. Sci. 51, 2715–2720. 

Rosenberg, A.A., 2007. Fishing for certainty. Nature. 449: 989. 

Satelli, A., 2002. Sensitivity analysis for importance assessment. Risk Analysis. 22, 1–12. 

Sethi, G., Costello, C., Fisher, A., Hanemann, M., Karp, L., 2005. Fishery management under multiple uncertainty. J. 

Environ. Econ. Manag. 50, 300–318. 

Steel, A.E., McElhany, P., Yoder, N.J., Purser, M.D., Malone, K., Thompson, B.E., Avery, K.A., Jensen, D., Blair, 

G., Busack, C., Bowen, M.D., Hubble, J., Kantz, T., 2009. Making the best use of modeled data: Multiple 

approaches to sensitivity analysis of a fish-habitat model. Fisheries. 34, 330–339. 

Stewart, I.J., Hicks, A.C., Taylor, I.G., Thorson, J.T., Wetzel, C., Kupschus, S., 2013. A comparison of stock 

assessment uncertainty estimates using maximum likelihood and Bayesian methods implemented with the same 

model framework. Fish. Res. 142, 37–46. 

Thorson, J.T., Cope, J.M., 2015. Catch curve stock-reduction analysis: an alternative solution to the catch equation. 

Fish. Res. 171, 33–41. 

Walmsley, S.F., Howard, C.A., Medley, P.A., 2005. Participatory fisheries stock assessment (ParFish) guidelines. 

London: MRAG. 

Williams, E.H., Shertzer, K.W., 2015. Technical documentation of the Beaufort assessment model (BAM). U.S. 

Department of Commerce, NOAA Tech. Memo. NMFS-SEFSC-671. 43 p. 



Figure captions 

Figure 1. The distribution of respondents by RAM Legacy Stock Assessment Database region 

(panel a) and the number of years each survey respondent has worked as a stock assessment 

scientist (panel b). 

 

Figure 2. Frequencies of model framework used over time (panel a) and the number of reported 

assessments conducted in each assessment year (i.e., the sample size for each year of panel a) 

(panel b). 

 

Figure 3. Frequencies of uncertainty methods used by model framework pooled over the 20 years 

of available assessments. Note that the assessment sample size is less than total number of available 

assessments (N=294 vs. Ntotal=353) because not all package descriptions provided by respondents 

indicated the model framework used (e.g., “User-written ADMB code”). 

 

Figure 4. Frequency of use of frequentist (panel a, shades of gray) and Bayesian approaches (panel 

b, shades of green) for computing measures of uncertainty in assessment model outputs. 

 

Figure 5. Frequencies of uncertainty methods used over time (panel a) and the number of reported 

assessments conducted in each assessment year (i.e., the sample size for each year of panel a) 

(panel b). Frequentist methods are the gray bars and Bayesian methods are the dark green bars. 

 

Figure 6. Frequencies of sensitivity analyses used over time (panel a) and the number of reported 

assessments conducted in each assessment year (i.e., the sample size for each year of panel a) 

(panel b). 



 

Figure 7. Frequency of sensitivity analyses not conducted during routine stock assessments (left 

column) and the reasons for not doing so (right column). Note that the respondents may have 

selected multiple reasons for not conducting sensitivity analyses and thus the bars on the right 

column do not sum to the bars on the left. 

 

Figure 8. Frequency of quantities presented to managers (panel b). F and B represent fishing 

mortality and biomass, respectively.  

 



















Tables 

Software for assessments 

Option Description Example reference 

ADMB-based model Auto-differentiation Model Builder Fournier (2012) 

ASPIC A Stock Production Model Incorporating Covariates Prager (1994) 

AMAK Age/Age-size Models Assessment Method for NOAA Toolbox 

ASAP Age-structured assessment program NOAA Toolbox 

BSP Bayesian surplus production model McAllister and Babcock (2006) 

CASAL C++ Algorithmic Stock Assessment Laboratory Bull et al. (2012) 

CEDA Catch Effort Data Analysis Hoggarth et al. (2006) 

Coleraine A Generalized Age-Structured Stock Assessment Hilborn et al. (2003) 

CSA Catch-Survey Analysis Collie et al. (1983) 

FiSAT FAO-ICLARM Stock Assessment Tools Gayanilo et al. (1994) 

FiSAT II FAO-ICLARM Stock Assessment Tools II FAO (2013) 

FSIM Forecasting simulator Goodyear (2004a) 

LFDA Length Frequency Distribution Analysis Hoggarth et al. (2006) 

ParFISH Participatory Fisheries Stock Assessment Walmsley et al. (2005) 

PRO-2Box Project future abundance and mortality Porch (2017) 

PRODFIT Surplus production model Fox (1975) 

SCALE Statistical Catch-At-Length NOAA Toolbox 

SEEPA Simulates longline catch and effort data Goodyear (2004b) 

SS Stock Synthesis Methot and Wetzel (2013) 

STATCAM Statistical-Catch-At-Age Model NOAA Toolbox 

VPA Virtual Population Analysis Pope (1972) 

VPA-2BOX Dual Zone Virtual Population Analysis model NOAA Toolbox 

Yield Calculates fishery yields & stock biomasses Hoggarth et al. (2006) 

Table 1. Software used in the process of conducting a stock assessment; provided to the survey respondents (i.e., the de facto options 

featured in survey Section 1). All methods can be used to conduct sensitivity analyses.  



Modeling framework Description Example reference 

Data limited assessment models   

CC-SRA Catch curve stock reduction analysis Thorson and Cope (2015) 

DCAC Depletion-corrected average catch MacCall (2009) 

DB-SRA Depletion-Based Stock Reduction Analysis Dick and MacCall (2011) 

   

Other assessment models   

a4a Statistical catch-at-age model Jardim et al. (2014) 

ADBAYECOLA Age structured production model for trawling and longline catches Payá (2019) 

Baleen II Age structured production model de la Mare and Cooke (1993) 

BAM Statistical catch-at-age model Williams et al. (2015) 

BATOOTHFISH Age structured production model with trawling and longline catches Payá (2019) 

CALEN  Catch at length model Davies et al. (2001) 

CHOSAM Age structured production model with trawling and longline catches Payá (2019) 

CHUSmodel Chilean Humboldt Squid Depletion Model Payá (2019) 

F-ADAPT A custom statistical catch-at-age spatial model Brodiak et al. (1998) 

GADGET Globally applicable Area Disaggregated General Ecosystem 

Toolbox 

Gadget (2020) 

Grenadier model Age structured production model with swept area biomass and 

length composition 

Payá (2009) 

iSCAM delay-difference model Integrated statistical catch age model Martell (2012) 

Modified Punt-Walker model  Spatially aggregated age- and sex- structured population dynamics 

model 

De Oliveira et al. (2013) 

Punt and Walker (1998) 

MULTIFAN-CL  Statistical, length-based, age-structured model Fournier et al. (1998) 

MUPPET Age structured production model MUPPET (2010) 

SAD  A linked separable ADAPT VPA model De Oliveira et al. (2010) 

SAM Age-structured state-space model Nielsen and Berg (2014) 

SPiCT Surplus production in continuous-time Pedersen and Berg (2017) 

Two-stage biomass model (custom) Stage-structured production model Roel et al. (2009) 

XSA Extended survivor analysis Darby and Flatman (1994) 

   

Table 2. Software used in the process of conducting a stock assessment; provided by the survey respondents. 

 




